|
Research
Papers and Preprints
Optimizing Chain-of-Thought Reasoners via Gradient Variance Minimization in Rejection Sampling and RL
Jiarui Yao*, Yifan Hao*, Hanning Zhang, Hanze Dong, Wei Xiong, Nan Jiang, Tong Zhang, NeurIPS 2025.
Understanding Overadaptation in Supervised Fine-Tuning: The Role of Ensemble Methods
Yifan Hao*, Xingyuan Pan*, Hanning Zhang*, Chenlu Ye, Rui Pan, Tong Zhang, ICML 2024.
Towards Better Generalization via Distributional Input Projection Network
Yifan Hao*, Yanxin Lu*, Hanning Zhang, Xinwei Shen, Tong Zhang, Preprint.
Transformers as Multi-task Learners: Decoupling Features in Hidden Markov Models
Yifan Hao*, Chenlu Ye*, Chi Han, Tong Zhang, Preprint.
Efficient Model Editing with Task Vector Bases: A Theoretical Framework and Scalable Approach
Siqi Zeng, Yifei He, Weiqiu You, Yifan Hao, Yao-Hung Hubert Tsai, Makoto Yamada, Han Zhao, Preprint.
On the Benefits of Over-parameterization for Out-of-Distribution Generalization
Yifan Hao*, Yong Lin*, Difan Zou, Tong Zhang, Preprint.
The Surprising Harmfulness of Benign Overfitting for Adversarial Robustness
Yifan Hao, Tong Zhang, Preprint.
Spurious feature diversification improves out-of-distribution generalization
Yong Lin*, Lu Tan*, Yifan Hao*, Honam Wong, Hanze Dong, Weizhong Zhang, Yujiu Yang, Tong Zhang, ICLR 2024.
Monte Carlo Sampling without Isoperimetry: A Reverse Diffusion Approach
Xunpeng Huang*, Hanze Dong*, Yifan Hao, YI-An Ma, Tong Zhang, ICLR 2024.
SFQRA: Scaled Factor-augmented Quantile Regression with Aggregation in Conditional Mean Forecasting
Lei Shu, Yifan Hao, Yu Chen, Qing Yang, Journal of Multivariate Analysis.
(* denotes equal contribution.)
|